Statistics of Stellar Variability from Kepler - I: Revisiting Quarter 1 with an Astrophysically Robust Systematics Correction
نویسندگان
چکیده
We investigate the variability properties of main sequence stars in the first month of Kepler data, using a new astrophysically robust systematics correction. We find that the fraction of stars with variability greater than that of the Sun is 60%, which is marginally consistent with previous studies, and confirm the trend of increasing variability with decreasing effective temperatures. We define low and high variability samples, with a cut corresponding to twice the variability level of the active Sun, and compare the properties of the stars belonging to each sample. We show tentative evidence that the more active stars have lower proper motions and may be located closer to the galactic plane. We also investigate the frequency content of the variability, finding clear evidence for periodic or quasi-periodic behaviour in 16% of stars, and showing that there exist significant differences in the nature of variability between spectral types. Of the periodic objects, most A and F stars have short periods (< 2 days) and highly sinusoidal variability, suggestive of pulsations, whilst G, K and M stars tend to have longer periods (> 5 days, with a trend towards longer periods at later spectral types) and show a mixture of periodic and stochastic variability, indicative of activity. Finally, we use auto-regressive models to characterise the stochastic component of the variability, and show that its typical amplitude and time-scale both increase towards later spectral types, which we interpret as a corresponding increase in the characteristic size and life-time of active regions.
منابع مشابه
Robust, open-source removal of systematics in Kepler data
We present ARC2 (Astrophysically Robust Correction 2), an open-source Pythonbased systematics-correction pipeline to correct for the Kepler prime mission long cadence light curves. The ARC2 pipeline identifies and corrects any isolated discontinuities in the light curves, then removes trends common to many light curves. These trends are modelled using the publicly available co-trending basis ve...
متن کاملAstrophysically robust systematics removal using variational inference: application to the first month of Kepler data
Space-based transit search missions such as Kepler are collecting large numbers of stellar light curves of unprecedented photometric precision and time coverage. However, before this scientific goldmine can be exploited fully, the data must be cleaned of instrumental artefacts. We present a new method to correct common-mode systematics in large ensembles of very high precision light curves. It ...
متن کاملSearching for exoplanets in the Kepler public data
NASA’s Kepler mission to search for extrasolar planets has collected data from hundreds of thousands of star systems, and has discovered nearly 1000 confirmed exoplanets to date in addition to over 3000 unconfirmed candidates. The mission detects exoplanets using transit photometry, which detects the transit of a planet in front of a star as transient drops in stellar intensity. Raw data is col...
متن کاملRevisiting Beta 2 Glycoprotein I, the Major Autoantigen in the Antiphospholipid Syndrome
Beta 2 glycoprotein I (β2GPI) is a single chain 50 kDa highly glycosylated glycoprotein at an approximate concentration of 4 μM in cells. The abundance of this protein in plasma and its high state of preservation indicate the important role of this protein in mammalian. In addition, β2GPI has a particular structure in the fifth domain, and is categorized as the major antigen recognized by autoa...
متن کاملDetecting Reflected Light from Close-In Extrasolar Giant Planets with the Kepler Photometer
NASA’s Kepler Mission promises to detect transiting Earth-sized planets in the habitable zones of solar-like stars. In addition, it will be poised to detect the reflected light component from close-in extrasolar giant planets (CEGPs) similar to 51 Peg b. Here we use the DIARAD/SOHO time series along with models for the reflected light signatures of CEGPs to evaluate Kepler’s ability to detect s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011